
541 

chosen to correspond, in particular, to the conditions of app~cabili~ of the equations 
used. If the flow is stable, then the perturbations will not increase and the conditions 
indicated will also be observed at t >O. Thus the arguments concerning the stability 
in its classical sense made on the basis of utilizing Eqs, (1.1) or (1.8) are valid outside 
the range of their dependence on the magnitude of the difference U-A, provided that 
thelatterdoesnotvanishatO<r<i, 

We conclude by expressing our appreciation to V. T. Grin’ and N. I. Tilllaeva for the 
valuable discussions and help. 
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We consider nonlinear wave motions in chemically active, gaseous mixtures the 
change in the composition of which is governed by an arbitrary number of reac- 
tions taking place. We impose on the equations of state the condition ensuring 
that the frozen and the equilibrium speed of sound have similar values. We carry 
out an asymptotic analysis of the initial system of Euler equations together with 
the chemical reaction equations. As the result, we obtain an approximate system 
of equations for the velocity of the medium particles, and for the reaction com- 
pleteness vector the order of which is equal to the number of the relaxation pro- 
cesses plus one. 

1. Thermodynamics of the system, We assume that N reactions take 
place in the flow of a chemically active gaseous mixture. The change in the composi- 
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tion of the mixture is characterized by the vector g = (ql, . . ., qN), which we shall 
call the reaction completeness vector, The concentrations of the components depend 
on the magnitude of this vector. Let us denote by t the time, by r the distance from 
the plane, axis or center of symmetry, by u the particle velocity, p the density, p the 

pressure and let q’ = (ql’, . . ., qN’) and o = (oi, . . ., ON) be the vectors defin- 
ing the rate and the affinity of the chemical reactions. The equations of motion of the 

medium are written in the form [I, 21 

~+~+(y_l)!+o, $+&+~=o (1. 1) 

( 4 m at -+vz )+T(g+vg)=o 

where the values of the parameter v = 1, 2, 3 correspond to the flows with a plane, 
axis and center of symmetry, respectively. 

To close the above system, we must supplement it with another N f 2 equations 

connecting the thermodynamic functions q, a, p, p, s and T. In accordance with 
the Gibbs relation the increment in the specific internal energy e , is 

de = odq - pdV + Tds, V = 1 I p 

The first partial derivatives 

-p= ($) 
Ql..... QN, S 

T = (ii), ,,,, gN s= i,i==l,. ..,N 
1,, 

expressed in terms of g, V and S, represent the equations of state of the medium, 
and provide the required N f 2 relations connecting the thermodynamic quantities. 

As we know [l, 2],in the state of equilibrium the vector 6~ = 0. The chemical reac- 

tion rate vector q’ vanishes as well. Let us choose o, V and s as the independent 
thermodynamic variables. If we assume that the vector cl’ is analytically dependent on 
O, then in the vicinity of the state of equilibrium we have 

q’ = -H (V, s)o + . . . (1.2) 

By virtue of the Onsager equivalence principle the matrix H = 11 hi, (1 is symmetric. 
In accordance with the second law of thermodynamics, the entropy of the system can 
only increase when the process is irreversible. From this we conclude that the matrix 

H must also be positive-definite. 
We shall regard the pressure p as a function of the density p, entropy s and of N 

such quantities belonging to the sequence pi, . . . , q,v, ml. . . . , ON, which are not 
conjugate. Obviously, such a choice of the independent variables can be made in zN 
different ways. Let us introduce the M-tuply frozen and (N - &I) -tuply equilibrium 

speed of sound 
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(1.3) 

Here and henceforth the superscript accomp~y~g the thermodynamic derivatives indi- 

cates that 41 components of the reaction completeness vector q and N - M compo- 
nents of the vector o defining the chemical affinity, are referred to the independent 

variables. We have therefore j = 1, _ . ,, &f; k = M + 1, . . ,, N. We shall 
write, for simplicity 

where,in addition to the density and entropy, we use all components of either q or o 
as the independent ~rm~ynamic variables. The completely frozen af and completely 

in equilibrium a, speeds of sound are given by 

we obtain 

To transform the latter expression into a symmetrical form, we set 
N 

qM =e- 
c 

@Ml, 
T%=Mj-1 

The following relation is valid for the increment in the function qM : 
M N 

&u = ~,&I, - c %&%a - pdV -+ Tds 

m=L n=M+l 

From this it follows that the derivative 

Differentiating the identity (1.4) with respect to 0, we obtain 

an (Ml 

( 1 

9 

aoll q j, Ok’ P, 8 = 1$+1 ( gqj, p, s (~)~~~, P, s (1*5J 

Collecting the formulas obtained, we derive the following required relation : 

Taking into account the method used to introduce the function q,u, we can show that 
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the matrix 1 (dqr / &o,)$&.,,,, 11 is symmetric. In fact 

in the particular case at M = 0 , the formula (1.6) yields the expression 

(1.7) 

for the difference of the squares of the frozen and of the equilibrium speed of sound. 

The elements of the matrix R (ag, / ~~~)~~~,~ 11 . are defined in terms of the elements 
1 (a@, I &n)rlj,(r,s 11, where the indices I, n = 1, . . ., N. The second of these two 
matrices can be conveniently regarded as the straight matrix, in which case the first one 
will be an inverse matrix. Since 

the straight matrix 11 (dol / i3qn)qj,c,s l will be symmetric, Moreover, the condition 
of ~errn~ynarn~c stability of the system implies its positive definiteness [I_, 21. The 

symmetry of the inverse matrix [ (dq, I d~,),~,~,~ follows directly from the above 
arguments, provided that we set M = 0. This enables us to conclude that the latter 

matrix is also positive definite. 
Turning now our attention to the right-hand side of (1.7), we find that the properties 

of the matrices deduced above, imply that 

af2 - as2 > 0 (1.8) 

The equality in (1.8) is attained under the condition that all derivatives 

(% I ~%&,p,s = 0, n = 1, . . . , N. 

Since a% ( > aP Rj,’ 
= -iwqj.s =jq~)qj,p,s 

which means that either the pressure depends on the density and specific entropy only, 
or (which is equivalent) the vector o defining the chemical affinity is a function of the 
reaction completeness vector and specific entropy only, but remains constant when the 

density changes. 

a, Energy 6qurtion, Let us transform the third equation of (1. 1) which follows 

from the law of conservation of energy, We write the specific entropy increment in terms 
of the pressure and density increments, ;?: components of the reaction completeness 

vector and N - M components of the chemical affinity vector 

(2.1) 

From (2.1) we find at once 
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(2.2) 

and combining the above relation with the equations of continuity and conservation of 
impulse, we obtain 

If we refer all components of the reaction completeness vector to the independent ther- 
modynamic variables, then 

Equations (2.3) and (2.4) express the consequences of the law of conservation of energy 
in two different ways. Formally, they are analogous to the relation often used in the 
theory of flow of inert gases [3] and transform to this relation when 

6% = (~P/&hlg%,, P, s = VP /hJgl,, P, s = 0 
In the latter case the operators .i$’ and I,, appearing in the right-hand sides vanish 
identically ; moreover lhe M -tuple frozen speeds of sound coincide with the (N - 
M) -tuple equilibrium speeds of sound for any M = 0, 1, _ _ . , N , and are equal to 
the unique velocity a = f8p / aP)i” of propagation of small perturbations. 

3, Speeds of Bound, Let us assume that although the magnitudes of all M - 
tuply frozen and (N - M) -tuply equilibrium speeds of sound in a reacting medium 
differ from each other, the differences are small. Let the quiescent state through which 
a wave of small amplitude propagates, represent the state of complete thermodynamic 
equilibrium. Denoting the parameters of the unperturbed gas by the index zero, we set 

where a, is a small positive parameter and eivD are dimensionless quantities of the 
order of unity. The nonlinear perturbation theory for media in which a single chemical 

reaction takes place, was based on the above assumptions and developed in [4 - 71. From 
(1.6) we see the difference 

When the number of the independent relaxation processes is finite, this difference is of 
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the order of E,‘. Thus, by imposing the restrictions (3.1) on the equations of state ufthe 
medium, we ensure that all unperturbed speeds of sound differ slightly. 

Let us clarify bow the magnitudes of these speeds change with varying density, the re- 

action completeness vector and the chemical affinity vector. From the definition (1.3) 
follows 

(-> 

&+~I (MI 

%n PjT 4, P, s p,s* m==l,*“.*M 

Differentiating the identities (1.4) with I~RC~ to qrn I we obtain 

(3.2) 

Applying the farmulas (3.2) and (3.3) to the equilibrium state of the mixture and sub- 
stituting into them the quantities (8~ / 6&J,, p, s , we arrive, in accordance with Eqs. 
(3. If, at the following estimate: 

&@) (M) 

( > G- 
- r&l, m = 1,. . %) ilr (3.4) 

mO qj, -k, P, o 

Returning to the definition (1,3), we further have 

The derivatives 13~ J &s&‘!~?~, p, s appearing in the above expression are definedby 
the relations (Il. 5). Writing tiem dawn together with the relations (3.5) for a quiescent 

mixture, we see that 

J- Ea* 
n=M+i,.,.,N (3.6) 

In other words, changes in the values of the reaction completeness vectors and the che- 
mical affinity vectors do not appreciably affect the values of the M-tuply frozen and 

(Iv - M) -tuply equilibrium speeds of sound. 
Finally, in accordance with the definition (L3), we have 

As we know [3], the second partial derivative of the pressure with respect to specific vo- 
lume, determines the stability of the inert gas flows. In the present case we have 

(3.7) 
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Since (dq, / S’)~~~,, s = (dp / AII~)~$~ y, 8, it is clear that the quantity QIONeaa. 
The last term appearing in the right-hand side of the first formula of (3. ‘7) can be esti- 

mated by computing the following expression: 

from which we see that Qs,, N ea2. Collecting together the results obtained, we arrive 
at the estimate 

mfo - mjz) - ha, 
1 a2P 

mt=pq - ( 1 av2 qj, s 

(3. S) 

4. Auymptotio expanaion8, Let us assume that the magnitudes of all charac- 
teristic quantities of the gas mixture deviate little, at any instant of time and every point 
ofspace,from their corresponding quiescent values. As we know [l- 31, the transmission 

of signals in a relaxing medium is accompanied by dispersion, and in the limiting cases 
the speed of this transmission coincides either with the frozen, or with the equilibrium 
speed of sound. For the media considered here both the above speeds of sound have near- 

ly equal values. Clearly, the velocity a, of propagation of the acoustic waves will not 

be very different from the above values, since it is bounded by the inequalities a,, < 
c~a 6 afa. In the nonlinear theory of small perturbations it may turn out that afo < a,, 
e. g. the shock wave propagates at the velocity which exceeds both the equilibrium and 
the frozen speed of sound. We shall nevertheless assume that the difference between 
these quantities a,, a,, and ato is small, and we set 

a0 - ug = Eaa$M)ao (4.1) 

in the limiting cases when M = 0 and ill = N we have, respectively, 

the constants j3t”), fir and p, are obviously of the order of unity. 
Let us introduce a moving coordinate system attached to the element of the propagat- 

ing wave, and denote by L the characteristic length in this system. We assume thatthe 
flow of the relaxing mixture represents a short wave, i.e. the width of the region in which 
the perturbations are concentrated is small compared with the distances covered by the 
propagating wave. Let A be a small numerical parameter, then the independent varia- 

bles become 
t = & t’, r = sot + Lr’ 

0 
(4.3) 

Concerning the perturbations in the values of densidy, pressure, temperature, entropy and 
all speeds of sound considered above, we assume that they have the same order as the 
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velocity of the medium particles, the latter proportional to another independent small 
parameter E. Passing to the dimensionless unknown functions, we have 

U = EUaU’, P z= PO (1 + EP’), P = PO (1 + EP’) (4.4) 

T = T, (1 + ET’), s = so(l + ES’), ajf’ = a$’ fl + ~(ajtl”‘)~I 

We replace the right-hand side of the last equation of (1.1) the vector q defining the 

rate of the relaxation processes, with its expression given by (1.2). Inspecting the result- 
ing expression and taking into account the sequence of equations 

f am. 

t > -3s qj, s = Ea qio 
-!JfL eivo, i=f...., N 

we arrive at the conclusion that the perturbed reaction completeness vector is propor- 
tional to the product of the small parameters E, and ER, and the chemical affinity vec- 
tor must also be proportional to this product. Thus we have 

(li=‘?io(lfEEdi’), Q%=EEaAOil, i,Z==i,...,N 
qzopo 

(4.5) 

6. An&ly~lt of the Euler cqurttonr, In deriving the ~ymptotic equations, 
we shall retain in all relations only the principal terms, neglecting the terms of higher 
order of smallness. We shall also omit the primes accompanying all dimensionless vari- 
ables. 

After the ~nearizat~on,~tegra~on ofthe first two equations of the system (1.1) yields 
the formulas 

(5.1) 

The first of these equations expresses the fact that, within the approximation considered, 
the compression of the gas is reversible. The second formula states that when the com- 
position of the reaction mixture is constant, the Riemann relation characterizing a plane 
sound impulse propagating through an inert gas [3] holds for the whole flow of a multi- 
component reaction mixture. 

Taking into account the formulas (4.4) and (4.5). we find from the third equation of 

(1.1) that s - ee,s, i.e. that within the adopted accuracy 

s=o (5.2) 

Let us write a general expression for the deviation of the pressure from its e~ilibrium 
value in a quiescent medium, using the density,entropy, M components of the reaction 
completeness vector and ni - M components of the chemical affinity vector as the 
indenendent thermodynamic variables. We have 

Here the second term in the right-hand side vanishes by virtue of Eq.(5.2). Further, pas- 
sing from the iv-tuply frozen and (N - fkf)-tuply equilibrium speed of sound c$&’ 
to the velocity of wave propagation a, with the help of (4. l), taking into account the 
estimates of the thermodynamic derivatives obtained above and neglecting the terms 
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proportional to &a2 , we return to the first formula of (5.1). 
Next we turn our attention to the chemical reaction rate vector. We set 

h 

ii0 
= qiOQIOpo 

'ilP0 
&lO 

Here ‘til has the meaning of the time of relaxation of the i-th element, which is go- 
verned by the magnitude of the chemical affinity of the I -th element, and &to is a 
dimensionless qu~ti~ of the order of unity. Since the matrix /I hit j/ is symmetric, it 
is expedient to choose zil. = xfi. Substituting now the formulas (4.3) and (4.5) into 

the last equation of (1.1) in which the vector 4 is replaced by its expression (1.2), we 
find that in the first approximation .I 

aqi Lv 
ar= c N&il&, Ni, = -L, 

aoril 
i=l,...,N (5.3) 

&:I 

We see that Eqs.(S. 3) contain additional numerical parameters Nil which express the 

rarios of the macroscopic times z = L /’ a, to the relaxation times Zil. When all these 
ratios tend to zero or infinity, the analysis is considerably simplified. In the first case 
the thermodynamic state of the flow is almost frozen, and in the second case it is almost 

equilibrium. 
The components of the chemical affinity vector can be expanded as follows: 

(5.4) 

The components of the dime~ionl~ relaxation processes rate vector can be defined as 

follows : 
qi’ = EE a $? q,” 

The last equation of (1.1) now yields at once 

% 
ar --Niqi’, Ni= $1 i=i,..., N 

Oi 

and comparison with the formula (5.3) gives 

qi’ =: - 
N N. 

z( > 
-$ hoal 

I=1 1 

It is clear that Nil are the only real parameters while the numbers Ni can be elimi- 

nated altogether from the asymptotic analysis of equations. 
We now use Eqs.(2.3) and (2.4) to derive the missing relation connecting the velocity 

of the mixture particles with the components of the reaction completeness vector. Let 

us write the increment in the M-tuply frozen and (N - M) -tuply equilibrium speed 
of sound in terms of the increments of the density, entropy, M components of the reac- 
tion completeness vector and N - M components of the chemical affinity vector, as 
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Recalling the estimates (3.4) and 3.6) and the relations (5.2), we obtain the following 
expression with the accuracy to within e,s : 

Taking into account the expression (2. ‘2) defining the operator L$r” and the relation 

(4.1) which establishes the order of the difference between the velocity of the wave 

propagation and the M -tuply frozen and (N - Mj -tuply equilibrium speed of sound 
in a quiescent medium we obtain, after simple manipulations, 

2 (en#u - E&~)) ; + A [2 $ + (Y - 1) +I = (5.5) 

Here, in accordance with formulas (3,3), (1.5) and (3. l), the thermodynamic derivatives 

are 

In expanding the frozen speed of sound into a series, we use the density, entropy and all 
components of the chemical reaction completeness vector as the independent thermo- 

dynamic variables. As the result, we obtain 

a.foat = (g),j,sP.P + (g)qi,ssos 
from which follows 

at = (mjo - 

with the accuracy to within E,~. 
Using now the second expression of (4.2) for the 

wave propagation and the frozen speed of sound in 

+~af$g$qj,p,sqioq~ 
i=L 

l)P 

difference between the velocity of 
a quiescent state, we transform Eq. 

(2.4) to the form 
2 (emfou - - E,2sf)g +A[~$+(Y-I)+ (5.61 

- % 
i 

PLSG 

N 

z qio 
i=l 

Let us compare the values of the thermodynamic coefficients m$z) and nfo. In accord- 

ance with Eq.(3.8), their difference is of the order of ea2. Turning our attention to(4.1) 
and (4.2) we see that we can approximation, that 

rnjm$ = mjo = m. = - 
~j’* 



Let us now set &I = N in Eq. (5.5). We have p(M) = g,, the second sum in its 
right-hand part vanishes, and it becomes (5.6). A direct check confirms that Eqs. (5.5) 
and (5.6) coincide irrespective of the choice of the independent ~ermodyn~ic func- 
tions. The latter of the two equations is simpler and therefore preferable to be used as 
the missing relation connecting the particle velocity with the components of the chemi- 

cal reaction completeness vector. 

6, Cutonicil form of the chemical reaction equrtioni, Wein- 
traduce the vector 

e = (e,, . . ., eN), ei z-z eivo (6.1) 

and two symme~ic positive definite matrices 

F’ = 11 fill1 = 11 Nilhit, II (6.2) 

Using the above notation we can write (5.3) and (5.4) as 

respectively. 

@/dr = Fw, w = Gq - ep = Gq - eo (6.3) 

Transforming the components of the vectors q and o, we can reduce Eq. (6.3) to their 
canonical form [8, 91. before anything else, we note that we can always choose a mat- 
rix G for which the product F, = C*FC is the unit matrix E, where C* denotes 
the matrix transposed to the matrix C [lo]_ Let us perform a change in variables 

q,= c*q, WI= c-10 
(6.4) 

Here C-I is an inverse matrix of G. Finally, we have 

2 = EKQ, a1 = G,q, - eg, e, = Cyfe, G1 = WG (C-l)* (6.5) 

Since the matrix G is symmetric, G, is also symmetric, Therefore an unitary matrix 
U exists such that the product G, = U*G,U = U-rG,g is a diagonal matrix D. 
Let us carry out another change of variables 

q, = u-“q,, 0s = u-‘or (6.6) 

The first equation of (6.5) is invariant with respect to such ~~sformatio~, therefore 
we have 

ag,=Eo 
Lb 27 o2 = Dq, - e2u, e, = U-*el, D = U “GIU (6. ‘0 

,Let us compute the diagonal elements of the matrix D = 1 dir 11. They are equal to 
the eigenvalues of the matrix G, since the ~ansfo~a~on U-‘G,U leaves them un- 
affected [lo]. Further,the equality C*FC = E means that G*I1’ = C-l and G, = 
G*FG (C*)-I. We see that the diagonal elements of the matrix D coincide with the 
eigenvalues of the product FG of the matrices F and G given by (6.2). 

Using different arguments we arrive at the relations FC = (CT*)-1 = (C-Ii*, and 
G, = PGFC. We can also assert that the diagonal elements of the matrix D are 
equal to the eigenvalues of the matrix CF. Since the matrices F and G are both 
symmetric, we have GF = (FG)*, i.e. eigenvalues of the matrices FG and GF are 
the same. Let us denote them by h,, . . ., h.~, then dzl = 0 (i # 1) and dii = 
hi > 0. As regards the vector e,, combining the third equations of the system (6.5) 
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and (6. ‘7) yields e, = U-lG-l~ and the vector e is defined in terms of the known 
thermodynamic derivatives er v, using the formulas (6.1). 

It can easily be shown that the scalar product edq / ar is invariant under the linear 
transformations introduced above. From this it follows that Eq. (5.6) finally assumes 
the form 

2( emQv - 13,2&) .t$ +A[2~,t(V.--)~]=E~2~e~~ 

and, together with Eqs. (6.7) it forms a closed system of the order equal to the number 
of the relaxation processes plus one. 
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Among the attempts to extend the applicability conditions of the general theo- 
rems of dynamics, a prominent position is occupied by several generalizations 
of the area theorem proposed by ChaGlygin and successfully applied by him to 
solving a number of problems on the rolling of spheres [l, 23. Further general- 


